

8DA-a

LARGE and SPECIAL SPIN-SYSTEMS

1.2

1.3

1.1

0.9

ppm

1.0

15.04.2019 Simulation time < 2 sec !

EXIT(ESC) VIEW ZO	OM 100% << >	< <> >> 2 X	X / 2 HZ/PPM HE	ELP(H) 1. RMS = 0.00	00 PCR=N WidthM	lode=A JFIX=DEF R	anges=ON REAL	BARTLETT= 20.0
FILES(F2,F5,F7)	PREPARE(F3)	PROFILE(F6)	SYSTEM(G)	LOCAL(^G)	InterChange	Equalize	Integrate(A)	Broadening(F11)
TABLE(TAB)	SCRIPT(S)	WeightRange(^W)	SEARCH(^O)	AddLines+fit(^INS)	AddLine(INS)	Rem line(DEL & ^DEL)	ShiftStructure	ReadOriginal(F4)
SIMULATE(F8)	QMTLS(^F8)	CTLS(shft-F8)	REGRESSION(^R)	AutoFit(^F9)	Make ASL(^F7)	Lock & Fix(^L)	IgnoreRange(U)	BASELINE(B)
Molar\$ 6 [changes] TSP 0.644 13NH2-PRO 0.022 CHOLINE 0.009 CREATININE 26.95 UREA 22.45 HIPPURATE 4.187 CITRATE 3.712 GLYCINE 1.933 MESAMINEO 1.664 TAURINE 1.491 CYS 1.222 CL& ITINE 1.491 CYS 1.222 GLYCOLLAC 0.536 GUANIDEAC 0.758 ISOCITRIC 0.657 GLUCOSE 0.633 GLUTAMIN 0.674 MEOH 0.676 PHACELN 0.618 ERYTHRITOL 0.617 20HGLUTAR 0.633	Press TAB to skip to 11 [0.5589] MANNITOL 23 [0.0003] TRIGONELL. 23 [0.0003] TRIGONELL. 24 [-0.5551] ACAMINOPH. 88 [-0.1108] ME2AMINE 99 [-0.0175] HCOOH 97 [-0.0152] TRREONICA. 99 [-0.0128] SNH2IBUTY. 93 [-0.0068] SER 1[-0.0064] INDOXL 99 [-0.0054] MYOLNETOI 1[-0.0056] CIPCONC. 71 [-0.0056] CIPCONC. 71 [-0.0056] CIPCONC. 71 [-0.0056] THREONIN 66 [-0.0049] THREONIN 71 [-0.0028] SMEHIS 72 [-0.0028] GLYCEAC 75 [0.0041] ALLATOIN 95 [-0.0021] CYSTATHION	parameters 0.5919[-0.0031] 0.5681[-0.0030] 2.5352[-0.0101] 0.5631[-0.0025] 0.5246[-0.002] 0.4794[-0.0021] 0.4620[-0.0026] 0.4754[-0.0021] 0.4620[-0.0026] 0.4045 -0069] 0.4045 -0069] 0.536 -0.0741 0.394 -0.0005] 0.2440[-0.0002] 0.3678[-0.0124] 0.3668[-0.011] 0.3164[0.0006] 0.3024[-0.0006] 0.3024[-0.006] 0.306[0.0086] 0.2817[-0.0011] 0.2672[-0.0021] 0.2672[-0.0021] 0.2672[-0.0021] 0.2672[-0.0021] 0.2672[-0.0021] 0.2672[-0.004]	ACETATE 0.2385[51YCEROL 0.2408[CYSTINE 0.2292[- DEOXYTHRE 0.2249[- DEOXYTHRE 0.2249[- DEOXYTHRE 0.2249[- DEOXYTHRE 0.2249[- DEOXYTHRE 0.2249[- DEOXTHRE 0.2249[- DEOXTHRE 0.2139[- DETAINE 0.2139[- DETAINE 0.2139[- DETAINE 0.2139[- DETAINE 0.2139[- DETAINE 0.2139[- DETAINE 0.2139[- DETAINE 0.2139[- DETAINE 0.2139[- DETAINE 0.1780[- DETAINE 0.1780[- DETAINE 0.1781[- DETAINE 0.1542[- DETCOLINE 0.1534[- DETCOLINE 0.1534[- DETCOLINE 0.1534]	0.0003] XYLITOL 0.0020] DIMESULFO 0.0003] GLUCARATE 0.0010] ACAMINOPH 0.0025] SUBJORT 0.0009] HYBOXANTH 0.0009] HYBOXANTH 0.0008] ANSERINE 0.0011] SOPISOVAL 0.0009] PHE 0.0011] SOPISOVAL 0.0009] PHE 0.0011] TR 0.0008] 2-AMINOAD 0.0019] TR 0.0008] SUBKANTHI 0.0010] SUCCINICA 0.0010] SUCCINICA 0.0010] SUCCINICA 0.0010] SUCCINICA 0.0010] NACHEURAM 0.0208] CARNOSINE 0.0010] QUINOLINE 0.0011] QUINOLINE	0.1612[0.0069] MA 0.1464[-0.0006] 1- 0.1528[-0.0015] CA 0.6093[-0.0040] TR 0.1342[-0.0017] BA S122[-0.0017] BA S122[-0.0005] PT 0.1369[-0.0005] PT 0.1369[-0.0002] ME 0.1247[-0.0012] ME 0.1247[-0.0013] A 0.117 [0013] A 0.117 [0013] A 0.1130[-0.0008] N- C135 0.0007] A 0.1069[-0.0032] ME 0.1069[-0.0032] ME 0.1005[-0.0005] IN 0.0950[-0.0005] IN 0.0950[-0.0005] IN 0.0950[-0.0005] N-	LITOSE 0.1103[0. -METHYLN. 0.1060[-0. -METHYLN. 0.1060[-0. -METHYLN. 0.1060[-0. -MENTINE 0.1020[-0. -MENTINE 0.1020[-0. -MENTINE 0.0853[-0. -MENTINE 0.0875[-0. -MENTINE 0.0876[-0. -MENTINE 0.0876[-0. -MENTINE 0.0732[-0. -ACASPAR. 0.0732[-0. -ACASPAR. 0.0735[-0. -MENTINE 0.0735[-0. -MENTINE 0.0735[-0. -MENTINE 0.0735[-0. -MENTINE 0.0735[-0. -MENTINE 0.0735[-0. -MENTINE 0.0735[-0. -MENTINE 0.0735[-0. -MENTINE 0.0642[-0. -MENTINE 0.0642[-0. -MENTIN	0001] 30HBUTYRA 0005]list continu 0005] mg/ml 0003] Structure area 0004] 0016] Calculated are 0010] Calculated/obs 0004] Background/obs 0002] Spectrum/obsd 0003] 20 spectrum/obsd 0003] 10 spectrum/obsd 0003] 10 spectrum/obsd 0003] 10 spectrum/obsd 0003] 10 spectrum/obsd 0003] 10 spectrum/obsd 0004] Gaussian 0004] Gaussian 0003] Line-width 1 0005] 0005] 0005]	0.0658[-0.0003] 0.0658[-0.0003] 0.001 0.1939] 0.0028 0.0008 0.0008 0.0008 0.0005 0.0005 0.0005 0.0005 0.008 0.008 0.008
			PICOLINE 0.3548(-					
A And A	La com Multin Will W	1714 WAR and head.		-M-Malad - Mu	MMLLAMV 1		TAR. WINA MORENTING	Mar Mar Markan I
9.0 8.	5 8.0 7.	5 7.0 6	.5 6.0	5.5 5.0	4.5 4.0	3.5 3.0	2.5 2.0	1.5 1.0

URINE 1000+1 particles, simulated spectra of 214 metabolites

P90 = No. of compounds having at least one 90% purity signal

SPIN-SYSTEM DECOMPOSER

Automatic packing of large spin-networks

The simulation of octanyl Ar(CH₂)₇CH₃-spin system (of FELIX, see below) as

$AA'BB'CC'DD'EE'FF'GG'J_3 - {\sf spin-system}$

yields > 58 000 000 allowed transitions, > 3 600 000 non-zero intensity transitions (with 99.8% of total intensity) or > 3 300 000 (97% of total) and, after packing > 76 000 non-degenerate non-zero lines !

When the system is decomposed into three overlapping sub-systems

where, for example KK'BB' belongs into two sub-systems, the numbers are > 1 455 000 (allowed), > 157 800 (99.8%) and ca. 24 000 (packed) transitions !

In the packing algorithm, transitions separated by < 0.01 Hz and belonging to the same species are combined, in iteration also their derivatives must be similar.

....and the simulation time drops from 64 sec to 4 sec !!

SYSTEM= PROTON 1 PARTICLES= 5

12 - 13 - 14 - 15 Large spin-networks: Testosterone

All the protons coupled with each others through the spin-network

- Simulation time < 0.7 sec, with different line-width for each particle.
- 8: 170H

1.5

2

Difference

1

QMSA of total ¹H NMR and 1D TOCSY spectra of *FELIX* chiral nematic solvent

Published in

Susanna K. Ahola, L. Petri Ingman, Reino Laatikainen, Jari Sinkkonen and Jukka P. Jokisaari, ²¹Ne and ¹³¹Xe NMR study of electric field gradients and multinuclear NMR study of the composition of a ferroelectric liquid crystal. <u>J.Chem.Phys.</u> **149**, 234901 (2018). https://doi.org/10.1063/1.5052499

QMSA of Ar- $(CH_2)_7CH_3$ **1D TOCSY**

Experimental: ¹H TOCSY spectrum in which proton *response factor* decays from 1.00 (Ar-CH₂, source of TOCSY spin-polarization) to 0.26 (CH₃).

Simulation as XX'RR'AA'BB'CC'DD'EE'K₃-system: Simulation time: ca. 4 sec Theoretical transitions: 5 442 2281 Non-zero intensities: 2 442 281 (99.8% of theor.) Non-zero intensities: 2 223 827 (97% of theor.) Lines after packing: 129 871 (packing crit. 0.010 Hz)

For AA'BB'CC'DD'EE' all the ²J, ³J and ⁴J are not well-defined by the spectrum, they were taken from analysis of heptane (*Magn.Reson.Chem.*, 2012, 50, 598) and kept fixed during iteration.

All the CH_2 shifts are well-defined, see the shift order: A-B-C-E-D-K ! Analysis explains the odd shape of CH_3 -SIGNAL (593 non-degenerate lines within 18 Hz) !

FELIX of MILLIONS TRANSITIONS

fair confidence

The FELIX methyl signal carries the information from the alkyl populations

qQMSA of T2 edited serum spectrum, from J.Magn.Reson., 2014, 242, 67-78

The team